Propositional Dynamic Logic - définition. Qu'est-ce que Propositional Dynamic Logic
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Propositional Dynamic Logic - définition

BRANCH OF LOGIC CONCERNED WITH THE STUDY OF PROPOSITIONS (WHETHER THEY ARE TRUE OR FALSE) THAT ARE FORMED BY OTHER PROPOSITIONS WITH THE USE OF LOGICAL CONNECTIVES, AND HOW THEIR VALUE DEPENDS ON THE TRUTH VALUE OF THEIR COMPONENTS
Sentential logic; Sentential calculus; Propositional logic; Sentence logic; Sentance logic; Propositional Calculus; Truth-functional propositional logic; Propositional calculi; Truth-functional propositional calculus; Classical propositional logic; Exportation in logic; Solvers for propositional logic formulas; History of propositional calculus; Truth functional propositional calculus; Truth functional propositional logic

propositional calculus         
propositional logic         
<logic> (or "propositional calculus") A system of {symbolic logic} using symbols to stand for whole propositions and logical connectives. Propositional logic only considers whether a proposition is true or false. In contrast to predicate logic, it does not consider the internal structure of propositions. (2002-05-21)
Propositional calculus         
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic.

Wikipédia

Propositional calculus

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.